

Regolatore per unità terminali VAV con attuatore e trasduttore integrati per il controllo dell'aria

XENTA 102-AX è un regolatore di zona progettato per applicazioni di riscaldamento e raffreddamento VAV con una o due stadi di riscaldamento. L'unità mantiene costante la temperatura ambiente controllando il flusso d'aria e gli stadi di riscaldamento. Tramite un sensore di CO2 esterno è possibile controllare la qualità dell'aria in ambiente. Il regolatore XENTA 102-AX integra in un insieme compatto un trasduttore statico della velocità dell'aria ed un attuatore bidirezionale motorizzato. La sonda di rilevamento velocità dell'aria a differenziale di pressione richiede una manutenzione minima: questo prodotto è quindi adatto ad essere posizionato nel condotto di ritorno dell'aria. Il regolatore è certificato LONMARK® e comunica su rete LONTALK® TP/FT-10 tramite doppino twistato non schermato. Può funzionare come unità stand-alone o come parte di un sistema. Tutte le variabili di rete possono essere monitorate e configurate tramite Plug-in di rete o localmente attraverso il termostato intelligente I/ STAT o il pannello M/STAT.

dati tecnici

Alimentazione 24 V AC ±10%, 50-60Hz tempo

Assorbimento

regolatore 8VA uscite digitali max.18VA totale max.48VA

Temperatura ambiente

operatività 0 /+50 °C -20 / +50 °C immagazzinaggio umidità max. 90% RH, non-condensante

Dati meccanici

protezione NEMA 1 e IP 10 dimensioni 197x159x63 mm 1,04 kg peso classe infiammabilità materiali UL 94-5V UL

Ingressi Digitali

5 V DC a 0,5 mA contatto

Ingressi Analogici

tipi termistore 10 kOhm NTC intervallo tipico 0.25 % (resistenza) precisione risoluzione intervallo 0.1 %

Velocità pressione in ingresso

campo 0-249 Pa precisione 5% a 250 Pa raccordo sensore tubi in polietilene FRPE 6.33 mm dispositivo terminale nessun consumo d'aria

Uscite

bassa tensione triac tensione max 0,75 A (2 A totale per tutte d'alimentazione 24 V A e tre le uscite) capacità nominale della coppia 6 Nm 0°/95° totalmente regolabile corsa

2,4 sec/grado rotazione (50 Hz) 2 sec/grado rotazione (60 Hz) indicazione posizione visiva comando manuale pulsante

removibile ad innesto Morsettiera

Servocomando serranda

da min di 25 mm dal box, diametro 12,7 mm

Programma applicazione

ciclico 1 s

LED

accensione verde trasmissione in corso su rete LON ambra ricezione in corso su rete LON verde neuron service ambra

Interoperabilità

standard conforme a Linee guida interoperabilità LONMARK e Profilo funzionale LONMARK: regolatore VAV protocollo di comunicazione LonTalk® canali esistenti

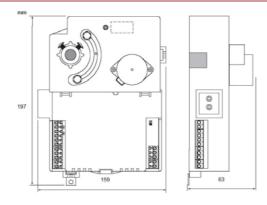
TP/FT-10, 78 kbbs 3150[®], 10MHz Tipo Neuron®

Standard di conformità

UL 916

C-Tick, FCC Part 15 CE EN 61326:1998 Equipaggiamento di Gestione dell'Energia US Patent n. RE37, 245E

Con riserva di modifiche tecniche senza preavviso. Tutti i marchi citati e i diritti da essi derivanti appartengono ai legittimi proprietari, vedi *note legali http://www.serviceclima.it*


identificativo prodotto

Prodotto	Descrizione	Codice
XENTA 102-AX	Regolatore ambiente LonMark® per VAV completo di motore per serranda e sensore di pressione	0303-01-05
	differenziale, alimentazione 24 V AC	

accessori

Prodotto I/STAT LED I/STAT LCD M/STAT LED	Descrizione Sensore intelligente per montaggio a parete completo di display e tastiera. Sensore intelligente per montaggio a parete completo di display e tastiera. Versione portatile dell'I/STAT per la manutenzione, completo di cavo interfaccia e connettore.	Codice 0307-01-04 0307-02-04 0307-03-04
S/STAT	Sensore per montaggio a parete con tasto bypass, potenziometro per la regolazione del setpoint di temperatura ed una presa jack di comunicazione M/STAT	0307-04-04
TTS100WJ	Sensore a termistori per montaggio a parete con presa jack di comunicazione M/STAT	0307-01-03
STR200	Modulo per montaggio a parete con sensore di temperatura	0305-01-03
STR200-W	Versione tutta bianca del modulo STR200	0305-02-03
STR202	Modulo per montaggio a parete con sensore di temperatura, tasto bypass e manopola di regolazione setpoint	0305-03-03
STR250	Modulo per montaggio a parete con indicazione di temperatura, regolazione setpoint, tasto bypass, controllo velocità di ventilazione e display	0305-04-03

dimensioni

collegamenti

Fissare con cura i cavi al regolatore; per limitare i movimenti dei cavi si consiglia di installare appositi serratavi vicino ai morsetti. Se si utilizza un normale trasformatore collegare l'alimentazione 24 V AC G-G e G0-G0 in **tutte** le unità. Questo non riguarda i morsetti G0 del modulo a parete. Si consiglia inoltre di mettere a terra i morsetti G0 dell'installazione al fondo del trasformatore. Utilizzare fusibili da 6 A max per ciascun regolatore o per ciascun gruppo di controllori. Inguainare U1 e M quando non vi è alcun sensore collegato.. Lunghezze altri cavi: max 30 m, min 0,7 mm2

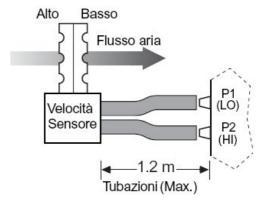
G e G0

Sezione minima consentita: 0,75 e 1,5 mm².

C1 e C2:

La porta TP/FT-10 consente il collegamento tra le apparecchiature senza alcun limite di topologia. La massima distanza di collegamento in un segmento dipende dal tipo di cavo utilizzato e dalla topologia.

Cavo	Lunghezza max. bus, topologia bus a due estremità, m	Distanza max da nodo a nodo, topologia libera ad una estremità, m	Lunghezza max topologia libera ad una estremità, m
Belden 85102, doppino twistato singolo	2700	500	500
Belden 8471, doppino twistato singolo	2700	400	500
UI Level IV AWG doppino twistato	1400	400	500
Connect-air 22 AWG, uno o due doppini	1400	400	500
Siemens J-Y(st) 2x2x0.8 cavo twistato elicoidale a 4 fili, schermato	900	320	500
TIA568A Cat. 5 24 AWG, cavo twistato	900	250	450

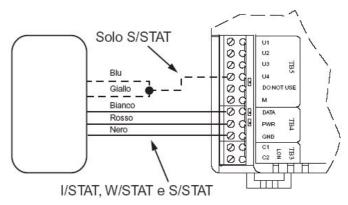

ТВ	N. Terminale	N. Etichetta	Sigla	Descrizione	
1	1	12	G	Ingresso 24 VAC	
	2	13	G0	Ingresso 24 VAC	
2	1	14	V1	Uscita digitale: controllo ventilatore (start/stop)	
	2	15	V2	Uscita digitale: controllo valvola caldo H1 (increase)	
	3	16	V3	Uscita digitale: controllo valvola caldo H2 (decrease)	
3	1	10	C1	Porta di comunicazione TP/FT-10 LON	
	2	11	C2	Porta di comunicazione TP/FT-10 LON	
4	1	7	STAT-DATA	I/STAT, M/STAT, S/STAT, cavo bianco	
				STR200-202 Signal 11	
				STR250 Data 11	
	2	8	STAT-PWR	I/STAT, M/STAT, S/STAT cavo rosso	
				STR200-202 Pwr 12	
				STR250 Pwr 12	
	3	9	STAT-GND	I/STAT,M/STAT, cavo nero	
				STR200-202 Gnd13	
				STR25 Gn13	
5	1	1	U1	Ingresso universale: termistore/componente (canale temperatura o contatto	
				emergenza)	
	2	2	U2	Ingresso universale: termistore/componente (sensore rilevamento presenza	
				persone)	
	3	3	U3	Ingresso universale: termistore/componente (CO2 o aria esterna)	
	4	4	U4	Ingresso universale: resistivio/componente (S/STAT blu e giallo)	
				Regolatore e interruttore STR202	
	5	5	-	Non utilizzato	
	6	6	M	Neutro	

Collegamenti del sensore velocità aria

- Collegare il lato bassa pressione del sensore di velocità all'etichetta P1 (LO) dell'unità XENTA 102-AX.
- Collegare il lato alta pressione del sensore di velocità all'etichetta P2 (HI) dell'unità XENTA 102-AX.

Nota

- Utilizzare un tubo in polietilene FRPE lunghezza massima di 1.2 m o 6.34 mm O.D./ 3.175 mm I.D. Connettori Tygon.
- Non esporre il sensore di velocità all'umidità. Se la condensa è un potenziale problema orientare le tubazioni ed il regolatore in modo tale da avere gli elementi di raccordo appuntiti al di sopra della parte più bassa della tubazione per creare un ostacolo all'umidità.

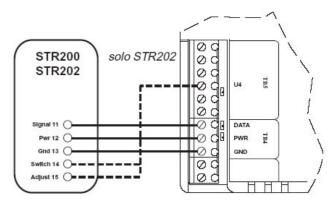

Collegamenti ingressi

Attenzione! Accertarsi che XENTA 102-AX non sia alimentato durante le operazioni di collegamento elettrico. Dimenticare di scollegare l'alimentazione di tutti gli apparecchi sotto tensione durante le operazioni di installazione elettrica può provocare danni seri ai componenti e/o scosse elettriche o ustioni.

- 1. Collegare i conduttori del dispositivo sull'ingresso esterno (contatto o termistore) ai morsetti da TB5 1 (U1) a TB5 4 (U4), vedere installazione.
- 2. Collegare il conduttore dell'altro ingresso al morsetto di messa a terra, TB5 6 (M)

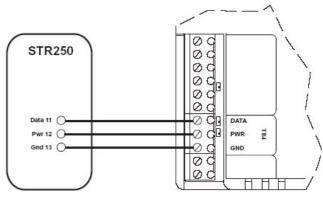
Connessioni I/STAT, TTS100WJ e S/STAT

- Collegare i connettori bianco, rosso e nero I/STAT, TTS100WJ, o S/STAT ai morsetti TB4 – 1, TB4 – 2 e TB4 –3 (Dati, Potenza e Terra) come mostrato nella figura.
- Quando si collega una connessione S/STAT collegare i conduttori blu e giallo al morsetto TB5 – 4 (U4).

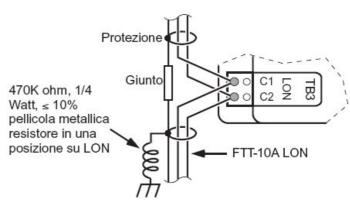


Collegamenti dei conduttori STR 200 STR 202

- Collegare i conduttori Segnale (11), Power (12) e Terra (Gnd) (13) dell'STR200 o STR202 ai morsetti TB4 – DATA, TB4 – PWR, e TB4 – GND come mostrato dalla Figura.
- Quando si collega un STR202 collegare Switch (14) e Adjust (15) a TB5 – U4.


Nota

Gli Switch (14) e Adjust (15) vengono collegati a TB5 - (U4) solo se si usa l'STR202.


Collegamenti dei conduttori STR250

 Collegare il conduttore Data (11), Pwr (12) e Gnd (13) dell'STR250 al morsetto TB4 – Data, TB4 – Pwr, e TB4 – Gnd come mostrato dalla figura.

Collegamento del doppino FTT-10A LON

- Collegare un conduttore del doppino twistato FTT LON al morsetto TB3 – 1 (C1), vedere figura.
- Collegare l'altro conduttore del doppino twistato FTT LON al morsetto TB3 – 2 (C2).
- Se si utilizza un cavo schermato, la schermatura dovrà essere collegata alla terra utilizzando un resistore (pellicola metallica) da 470 kOhm, 1/4 watt, δ 10% in un punto qualsiasi del cavo LON.
- 4. Il cavo FTT-10 LON può essere configurato abbastanza liberamente; sono consentite anche configurazioni a stella. Tuttavia la copertura di distanze rilevanti è consentita con cavo LON collegato con topologia bus convenzionale. Se si utilizza una topologia di collegamento libera un modulo terminatore singolo LonWorks® (codice prodotto 0201-01-01) dovrebbe essere collegato utilizzando cavi verdi, in un punto del doppino LON, preferibilmente in posizione centrale. Quando il LON è configurato con topologia bus, collegare due moduli terminatori alla rete utilizzando i cavi rossi, posizionandone uno ad ogni estremità del bus LON.

Connessioni ventilatore ausiliario e controllo temperatura

- 1. Collegare un conduttore del relè di controllo ai morsetti da TB2 1 (V1) a TB2 3 (V3).
- 2. Collegare l'altro conduttore del relè di controllo alla terra come indicato.

Nota

Prima di procedere al collegamento dei cavi all'apparecchio elettrico occorre stabilire un punto di messa a terra corretto.

Collegare l'alimentazione

- 1. Collegare il conduttore dell'ingresso 24 VAC di un trasformatore di alimentazione 24 VAC a parte e isolato lal morsetto TB1 1 (G), vedere *installazione*.
- 2. Collegare TB1 2 (G0) alla terra con un cavo 14-AWG (2.1 mm2). Il morsetto TB1 2 si collega alla stessa connessione di terra del connettore di neutro del trasformatore.
- Il cavo di terra Electrical Service Earth Ground deve essere collegato in modo sicuro al telaio dell'apparecchio.
- Il conduttore del trasformatore secondario 24 VAC deve essere collegato in modo sicuro al cavo di terra Electrical Service Earth Ground wire.
- Il cavo di terra Electrical Service Earth Ground deve essere collegato al terminale di terra sul morsetto d'ingresso alimentazione regolatore TB1 2 (G0).

Nota

Collegare il terminale TB1 – 2 (G0) ad un montante di collegamento equipotenziale separato da linee di giunzione, saldature o dispositivi di fissagggio sul telaio metallico può causare difetti di continuità.

Comando service request

Per eseguire la messa in servizio procedere come segue:

- Premere il pulsante Service Request.
- Il comando Service Request può essere ottenuto anche premendo e mantenendo premuto il tasto "Service" sul modulo I/STAT o M/STAT. Sul modulo l/STAT lampeggerà il messaggio SEr per indicare l'avvenuto collegamento.

Nota

Questo provoca l'invio da parte del Neuron Chip di un messaggio contenente il Neuron ID e l'ID di programma a tutte le applicazioni LONWORKS® collegate.

Caratteristiche specifiche

Dimensioni XENTA 102-AX

Viti di montaggio asse serranda

Coppia di serraggio min Coppia di serraggio max

Viti Torx

Caratteristiche ambientali

Temperatura ambiente

Umidità

Tensione ingresso

Ingressi/Uscite

Requisiti

Ingressi

Precisione Risoluzione

Ingresso Velocità Pressione

Gamma

Risoluzione

Precisione Uscite

197x 159x 63.5 mm

Variabile a seconda del materiale

3.4 Nm

10-32 (chiave T25 Torx)

0/50°C

dal 10 al 90% RH, senza condensa 24 VAC ±10%, 50/60 Hz @ 9 VA,

fusibile 4 A, più carico uscita (con I/STAT)

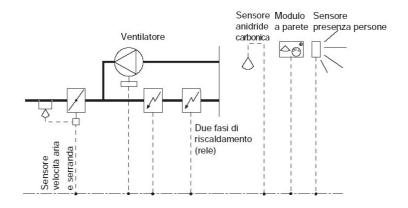
24 VAC @ 8 VA,

fusibile 4 A, più carico uscita (senza I/STAT)

alimentazione 24 V AC Classe -2

Digitale — Contatto a secco attivaz. 5 VDC a 0.5 mA Analogico — 10K Ohm NTC Termistore, Dale 1M1002-C3

0.25% val. tip. (resistenza)


0.1% della gamma

0 - 249 Pa (0 - 1.0" Colonna acqua)

1.07 Pa (0.0043" WC) 5% @ 250 Pa (1.00" WC) 24 VAC @ 0.75 A max per uscita

(2.0 A max totale su tutte le uscite)

applicazione

impostazioni e funzioni

XENTA 102-AX è un componente del sistema di ventilazione per unità VAV (vedi *applicazione*). Il regolatore integra la sonda di rilevamento velocità dell'aria e l' attuatore bidirezionale motorizzato ed ha le seguenti funzioni:

- monitoraggio CO₂;
- controllo riscaldamento;
- controllo serranda;
- commutazione caldo/freddo;
- · controllo presenza persone/interruttore luce.

Il controllo del riscaldamento può essere effettuato in diversi modi:

- 3 stadi
- modulante (con impulsi d'ampiezza fino a 999 s)
- increase/decrease

Il controllo del ventilatore può essere attivato o disattivato in modalità parallela o seriale.

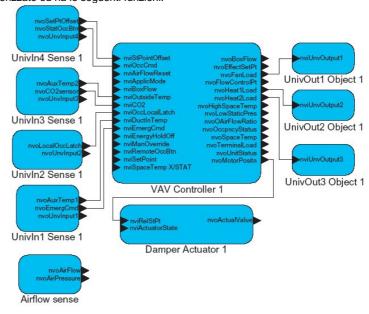
XENTA 102-AX VAV può funzionare come unità standalone o come parte di un sistema di unità collegate in rete. Tutte le variabili di rete sono preconfigurate di base; in questo modo si riducono i tempi di settaggio per entrambe le configurazioni (stand-alone e integrata). Il funzionamento in stand-alone è garantito poiché vengono forniti i dati necessari(vedi figura).

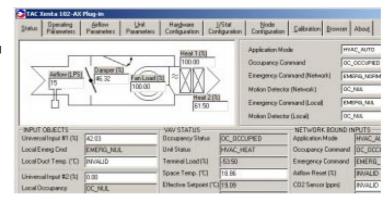
La calibratura del flusso d'aria e la configurazione dei dati principali possono essere effettuate direttamente dal modulo a parete (I/STAT) e dal pannello operatore portatile M/STAT.

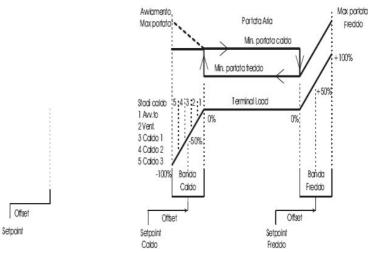
Plug-In

Se il regolatore è utilizzato come unità collegata ad una rete LonMaker LNS 3, viene fornito un software Plug-in che semplifica il settaggio ed il controllo delle funzioni del regolatore stesso, quali ad esempio le variabili di rete e i parametri di configurazione.

Modalità "occupato"


La modalità "occupato" viene utilizzata quando la zona è occupata (presenza persone) È la modalità di default dopo un reset o un'accensione.


Modalità standby


La modalità standby serve ad aumentare il setpoint di raffreddamento impostato e ad abbassare il setpoint di riscaldamento se la zona risulta temporaneamente non occupata.

Modalità bypass

Nei periodi di tempo (del giorno o della settimana) impostati come "non occupati" ovvero con l'ambiente vuoto senza presenza di persone, è possibile tornare al setpoint occupato utilizzando l'apposito pulsante di bypass o tramite comando manuale dal modulo a parete (I/STAT o S/STAT). Se il tasto viene nuovamente premuto prima dello scadere del periodo impostato, l'unità tornerà ai valori di setpoint della modalità "non occupato", a meno che l'ingresso hardware locale o l'ingresso rete siano in modalità "occupato".

Modalità "non occupato"

Questa modalità di funzionamento viene utilizzato per evitare di riscaldare/raffreddare troppo l'ambiente nelle ore in cui il locale non è abitato.

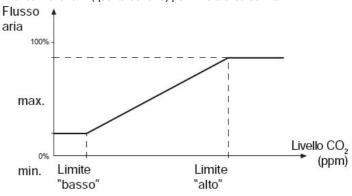
Riscaldamento mattutino

Regolazione della temperatura, prima dell'ora richiesta, in modo da poter ottenere la temperatura di comfort desiderata.

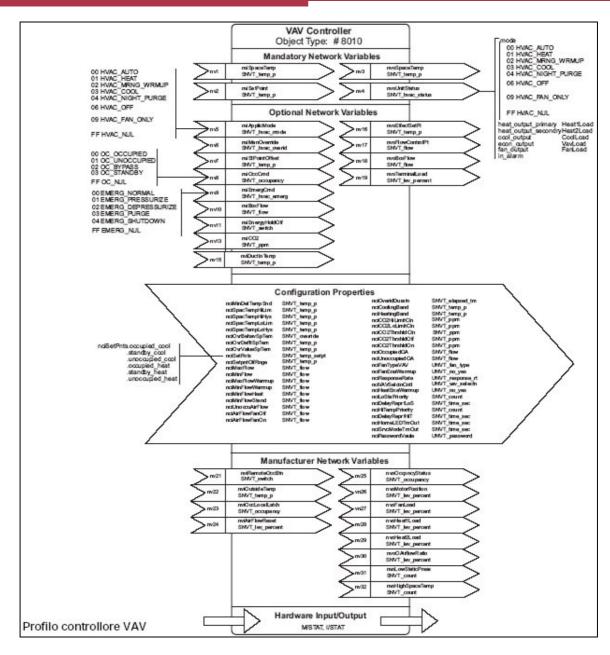
Ricambio aria notturna

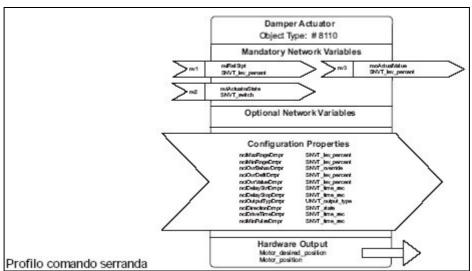
Utilizzo durante la notte di aria fredda esterna per ventilare l'edificio in modalità non occupato.

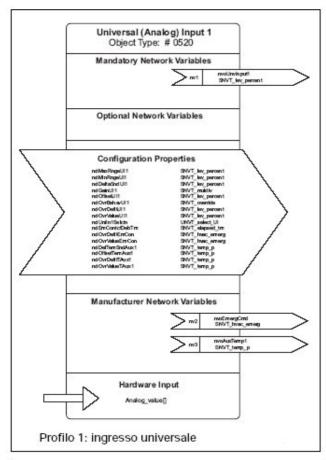
Emergenza pressurizzazione/depresurizzazione

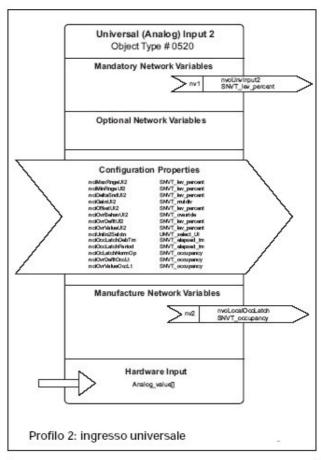

Controllo opzionale della pressurizzazione a supporto dei sistemi di controllo fumi (qualità dell'aria) per l'intera area servita.

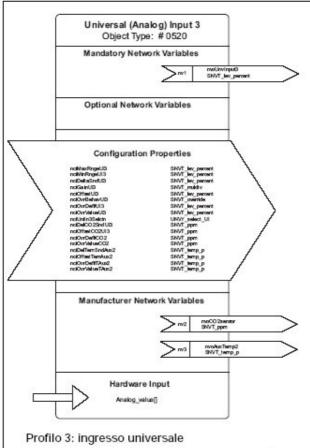
Controllo qualità dell'aria

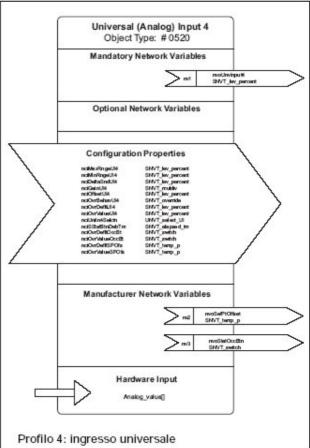

L'unità XENTÀ 102-AX è dotata inoltre di un regolatore aggiuntivo della qualità dell'aria, che regolerà il flusso dell'aria per mantenere il livello di anidride carbonica dell'ambiente entro i limiti impostati (vedere figura a lato).

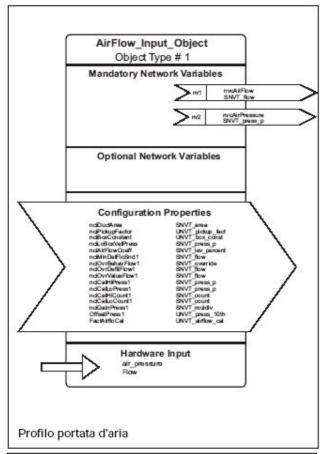

Pre-raffreddamento

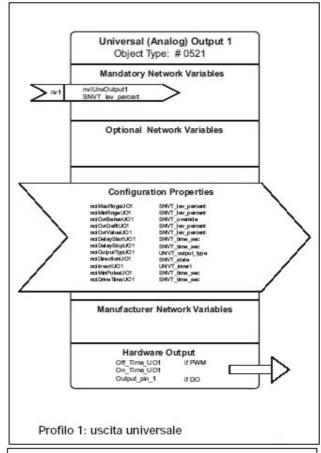

Abbassamento della temperatura nella notte per prevenire e ridurre la richiesta di raffreddamento durante il giorno.

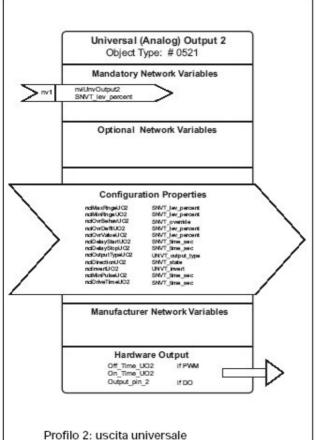


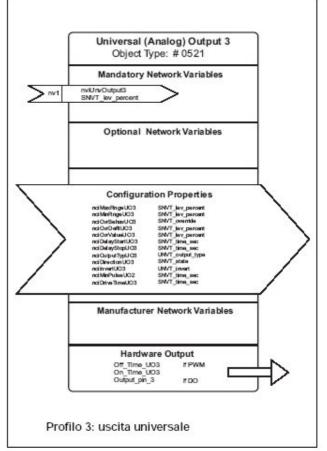

variabili network / oggetti LonMark®

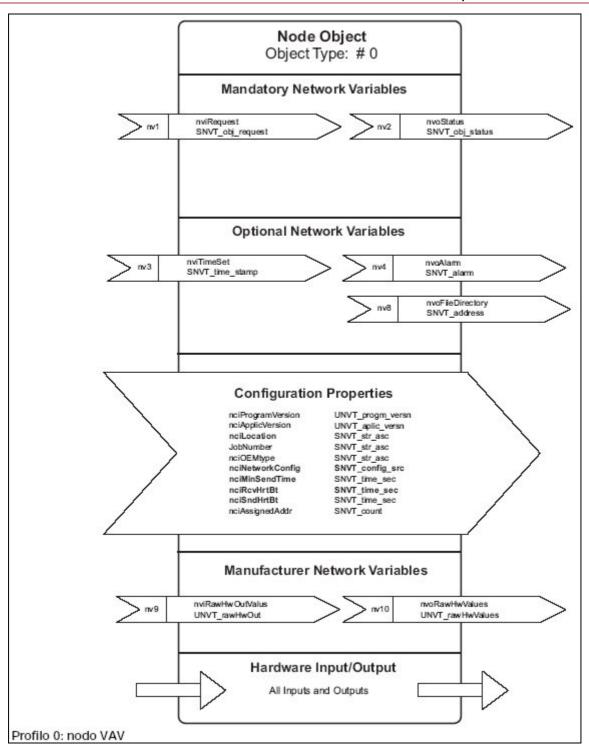


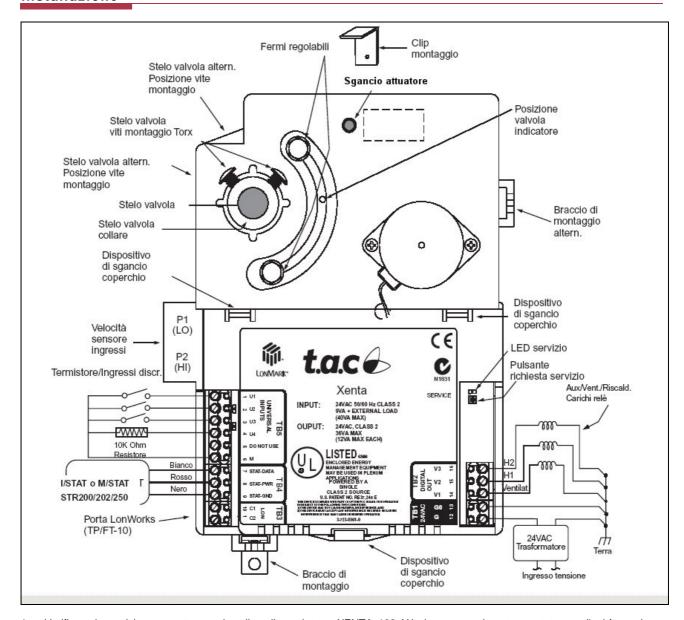












installazione

 Verificare la posizione corretta ove installare il regolatore. XENTA 102-AX viene generalmente montato con l'unità regolatore sporgente dal basso o dalla parte destra rispetto all'asse della serranda. Il funzionamento del regolatore è comunque possibile se l'unità viene installata in posizione verticale.

Nota

L'installazione del regolatore sulla parte destra (con la parte appuntita rivolta verso il basso) permetterà di evitare la formazione di condensa sul sensore di rilevamento velocità integrato. Se l'unità si sviluppa verso il basso l'area disponibile intorno all'asse della serranda dovrà misurare: 160 mm verso il basso a partire dal livello più basso dell'asse di fissaggio della serranda, 120 mm verso destra, 40 mm verso sinistra e 45 mm al di sopra dell'asse. Fare in modo di avere a disposizione spazio sufficiente per poter accedere al dispositivo.

- L'attuatore è progettato per il montaggio su un'asse di diametro 12.7 mm (1/2") con uno spazio libero minimo sull'asse di fissaggio di 63.5 mm (2.5"). Se il diametro dell'asse è inferiore a 12.7 mm (1/2") potrebbe essere necessario un adattatore. L'unità TAC XENTA 102-AX non è compatibile con diametri maggiori.
- 3. Se lo spazio libero sull'asse è inferiore a 51 mm, ma la lunghezza disponibile è di almeno 25.4 mm, spostare le due viti di montaggio dell'asse di fissaggio in posizione bassa (vedere figura 1)
- 4. Scegliere il braccio di montaggio che garantirà maggior stabilità per il funzionamento dell'attuatore. Posizionare la clip di montaggio sul supporto desiderato. Inserendo la clip nel supporto **non oltrepassare** la metà della sua lunghezza. Questo permetterà di allineare perfettamente la clip ed il retro dell'attuatore all'unità VAV.
- 5. Ruotare manualmente l'asse di fissaggio della serranda dell'unità VAV portandola in posizione completamente chiusa. Notare se per chiudere la serranda la rotazione viene effettuata in senso orario (CW) o antiorario (CCW).
- 6. Far scorrere il regolatore sull'asse della serranda. Posizionare l'attuatore e con una vite in metallo fissare la clip di montaggio all'unità VAV.

- Spingere quindi l'attuatore all'interno della cassetta fino a fargli toccare l'unità VAV, o la clip di montaggio o fino a che la parte posteriore dell'attuatore entri in contatto con l'unità VAV.
- 8. Premere e tenere il dispositivo rosso di sgancio attuatore e ruotare la ghiera dell'attuatore portandola in posizione quasi chiusa, sulla tacca 5°, se l'albero della valvola è stato ruotato in senso antiorario (punto 5). Se al contrario l'asse della serranda è stato ruotato in senso orario (punto 5) ruotare la ghiera dell'attuatore portandola in posizione 85°.
- 9. Stringere le due viti di montaggio Torx™ dell'asse di fissaggio serranda servendovi di una chiave Torx T25. La coppia di serraggio minima richiesta per fissare l'unità XENTA 102-AX all'asse della serranda dipende dal materiale dell'asse stesso. La coppia di serraggio minima per le viti della base è 3.4 Nm. Nota: La serranda deve poter ruotare liberamente quando il dispositivo di blocco è rilasciato. Se questo non accade l'attuatore potrebbe non essere allineato correttamente all'asse della serranda: potrebbe quindi essere necessario ripetere le operazioni illustrate dal punto 4 al punto 9 con un nuovo orientamento.
- 10. Se la serranda non ha un fermo meccanico nella direzione di apertura impostare i fermi regolabili dell'unità XENTA 102-AX nella posizione desiderata. Utilizzare una chiave 1/4" hex per regolare il fermo della vite sul XENTA 102-AX.

modifica parametro su I/STAT o M/STAT

Procedere come segue:

- 1. Premere il tasto Service.
- 2. Inserire il codice di accesso numerico (password di default =183) utilizzando i tasti +/ − . Premere il tasto Enter [∞] dopo ogni cifra inserita e ripetere fino all'inserimento di tutte e tre le cifre. A questo punto viene visualizzato il messaggio UP.
- Utilizzare i tasti Select [/] per selezionare il gruppo di parametri desiderato. I gruppi appaiono nell'ordine mostrato dalla Tabella 1.
 Quando viene visualizzato il gruppo di parametri desiderato premere il tasto [∞].

Tabella 1. Selezione parametri di setup

Gruppo parametri	Parametro
UP	Parametri unità
οΡ	Parametri operativi
AP	Parametri flusso d'aria
HCP	Parametri Hardware
Pdd	Point Data Display

- Premere i tasti Select [/] per visualizzare i parametri associati al gruppo (vedere le Tabelle da 3 a 6). Premere il tasto [∞] per selezionare un parametro da visualizzare.
- 5. Utilizzare i tasti +/- per modificare le cifre selezionate. Utilizzare i tasti Select [/] per inserire ogni singola cifra. Come mostrato dalla *Tabella 2*, l'accensione dei LED alla sinistra del nome indica una particolare funzione di edit.

Tabella 2. Selezione cifra tramite LED

Nome LED	Funzione segnalata	
SET TEMP	Edita la cifra all'estrema destra	
FAN SPEED	Edita la cifra al centro	
ROOM TEMP	Edita la cifra all'estrema sinistra	
OUTSIDE	NonUtilizzato	

Premere il tasto [∞] per confermare la modifica. Premere il tasto Service per annullare la modifica.

6. Ripetere le operazioni dal punto 1 al punto 5.

Tabella 3. Parametri unità (UP)

Codice	Default	Parametri	Gamma
dAr	0.05	Area condotto	0 – 1.20m² (0 – 12.9 feet²)
PF	0.95	Fattore Pickup	0 – 6.53 per 1000 (0.00 – 20.3 per 1000)
ьс	0.05	Costante (area cond.× fattore Pickup)	0 – 1.95 kilolitri/sec. (0.00 – 65.2 feet ³ /min. per 1000
dS	230	Durata corsa valvola	0 - 999 Secondi
HS	60	Tempo riscald.corsa	0 - 999 Secondi
Hd	30	Riscaldam, all'avvio	0 - 999 Secondi
Но	diS	Tipo uscita valv. riscald.	diS = discrete 1oP = 1 uscita, PWM 2oP = 2 uscite, PWM
HnS	nC	Corsa normale valv. riscaldamento	nC = Attuat. normalmente chiuso nO = Attuat. normalmente aperto
FS	30	Durata corsa ventilat.	0 - 999 Secondi
Fd	60	Tempo ventil onStop	0 - 999 Secondi
Fo	diS	Tempo uscita ventil.	diS = discrete 1oP = 1-uscita-PWM
dEP	no	Attiva modalità pressione dip.	no = Modal. indipend. pressione YES = Modal. dipend. pressione
EU	Si	Unità	Si = Sistema Internazionale iU=Imperial Units

Tabella 4. Parametri operativi

Codice	Default	Parametri	Gamma
od	2	Durata Bypass	0.0 - 23.9 Ore
SAr	4.0	Gamma regolaz. STAT	0.00 - 9.9° C (0.00 - 17.9 ° F)
ucs	28.0	Setpoint raffreddam. modal. non occup.	10.0 – 35.0° C (50.0 – 95.0° F)
scs	25.0	Setpoint raffreddam. modal. standby	10.0 – 35.0° C (50.0 – 95.0° F)
oCS	23.0	Setpoint raffreddam, modal, occup.	10.0 – 35.0° C (50.0 – 95.0° F)
oHS	21.0	Setpoint riscaldamento	10.0 – 35.0° C (50.0 – 95.0° F)
SHS	19.0	Setpoint riscaldamento modal.Standby	10.0 – 35.0° C (50.0 – 95.0° F)
UHS	16.0	Setpoint riscaldamento modal.non occ.	10.0 – 35.0° C (50.0 – 95.0° F)
СЬ	2.0	Gamma raffreddamento	0.00 - 9.9° C (0.00 - 17.9 ° F)
НЬ	2.0	Gamma riscaldamento	0.00 - 9.9° C (0.00 - 17.9 ° F)
ESS	ACU	Sorg. Setpoint effett.	ACu = Actual nor = Norm
css	121	Sensore di calibraz. spazio	-9.9 –50.0° C (14.2 – 122° F)
PP	-	Prove Performance	-

Tabella 5. Parametri flusso aria (AP)

Codice	Default	Parametri	Gamma
CLF	0.20	Flusso raffredd. basso Setpoint flusso	0.0 - 9.99 kilolitri/sec. (0.00 - 21.1 CFM per 1000)
CHF	0.60	Flusso raffredd, alto Setpoint flusso	0.0 - 9.99 kilolitri/sec. (0.00 - 21.1 CFM per 1000)
HAF	0.30	Setpoint flusso riscald. Minimo	0 – 9.99 kilolitri/sec. (0.00 – 21.1 CFM per 1000)
HLF	0.20	Setpoint flusso per riscaldam.	0.0 - 9.99 kilolitri/sec. (0.00 - 21.1 CFM per 1000)
HHF	0.50	Setpoint Flusso risc. alto per riscaldam.	0.0 - 9.99 kilolitri/sec. (0.00 - 21.1 CFM per 1000)
SAF	0.15	Setpoint flusso aria minimo	0 – 9.99 kilolitri/sec. (0.00 – 21.1 CFM per 1000)
UAF	0.00	Flusso aria mod. non occ.	0 – 9.99 kilolitri/sec. (0.00 – 21.1 CFM per 1000)
CPL	2	Calibra Flusso aria basso	0 – 9.99 kilolitri/sec. (0.00 – 21.1 CFM per 1000)
СРН		Calibra Flusso aria alto (sottomenu di CPL)	0 – 9.99 kilolitri/sec. (0.00 – 21.1 CFM per 1000)
СЬС	В	Calibra Box Constant	0 – 9.99 kilolitri/sec. (0.00 – 21.1 CFM per 1000)
FCS	2	Impostazione precalibrat, di fabbrica	no = no change YES = return to factory settings
AFC	50.0	Coeffic. filtro flusso aria	0.00 - 99.9%
CoL	0.00	Limite basso CO2 (Pari allo 0% Reset flusso)	0 – 5.0 PPM per 1000
СоН	0.00	Limite alto CO2 (Pari al 100% Reset flusso)	0 – 5.0 PPM per 1000
Fon	0.00	Avvio ventilat. parall. (On) Flusso aria	0 – 9.99 kilolitri/sec. (0.00 – 21.1 CFM per 1000)
FoF	0.00	Avvio ventilat.parall.(Off) Flusso aria	0 – 9.99 kilolitri/sec. (0.00 – 21.1 CFM per 1000)

Tabella 6. Parametri configurazione hardware (HCP)

Codice	Default	Parametri	Gamma
Adr	000	Indirizzo I.D. (non-LowWORKS)	000 - 999
FAn	non	Tipo ventilatore	non = Nessuno PAr = Parallelo SEr = Seriale
AHS	поН	Stati riscaldam. ausil.	noH = No riscald. aux H1S = Fase risc. 1 H2S = Fase risc. 2 H3S = Fase risc. 3
Cdr	С	Rotazione chius, valvola (Direz, chiusura)	C = Senso orario CC = Senso antiorario
inS	Uni	Selezione Ingresso 1 (U1)	non = Nessuno duC = Temperatura condotto ECn = Contatto emerg. Uni = Ingresso univers.
i2S	Uni	Selezione Ingresso 2 (U2)	non = Nessuno oCC = Rilevam, senso occ. Senso rilevam. Uni = Ingresso univers.
isS	Uni	Selezione Ingresso 3 (U3)	non = Nessuno CO2 = Sensore rilev. oA = Sensore temp. est. Uni = Ingresso univers.
i4S	Uni	Selezione Ingresso 4 (U4)	non = Nessuno SSP = S/STAT Pres. rSP = STAT Amb. Pres. Uni = Ingresso univers.

Tabella 7. Configurazione parametri Point Data Display (Pdd)

Codice	Default	Parametri	Gamma
Uit	2 - 2	Ingresso Universale 1 (U1)	0.0 - 100%
Ui2	K - K	Ingresso Universale 2 (U2)	0.0 - 100%
Ui3	× - *	Ingresso Universale 3 (U3)	0.0 - 100%
Ui4	× - -	Ingresso Universale 4 (U4)	0.0 - 100%
AFL	121	Flusso aria	0.0 - 9.99 kiloliters/sec. (0.0 - 21.1 CFM per 1000)
PrS	0.50	Veloc. Pressione	0 - 999 Pascals (absolute) (0.00 - 4.01 inches WC (absolute)
dCi	323	Tensione DC	0.0 - 99.9 VDC
rHS	323	Tensione riferim.Half Scale	0.0 - 99.9 VDC
rFS	323	Tensione riferim, Full Scale	0.0 - 99.9 VDC
rg	323	Tensione riferim.	0.0 - 99.9 VDC
dAC	323	Attuatore valvola	0.0 - 100%
Uo1	323	Uscita universale 1 (V1)	0.0 - 100%
Uo2	323	Uscita universale 2 (V2)	0.0 - 100%
Uo3		Uscita universale 3 (V3)	0.0 - 100%

avvertenze

Le operazioni di installazione e manutenzione devono essere eseguite da personale qualificato e in assenza di alimentazione dell'apparecchio e dei carichi esterni. Il produttore non risponderà di eventuali danni causati da inadeguata installazione e/o dalla manomissione o rimozione dei dispositivi di sicurezza.

Tutto l'equipaggiamento connesso alle unità XENTA deve aderire agli standard seguenti:

EN 60 742 (o altri standard di sicurezza rilevanti; per esempio lista ETL UL 3111-1, prima versione e CAN/CSA C22.2 n. 1010.1-92) per gli strumenti che forniscono una potenza di alimentazione di tipo ELV (normalmente 24 V AC) ai regolatori ed altri equipaggiamenti connessi.

manutenzione

Montare il prodotto in ambiente asciutto e protetto dalla polvere.